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Abstract
A low-temperature model system consisting of a central spin coupled to a
spin-bath is studied to determine whether interaction among bath spins has
an effect on central spin dynamics. In the absence of intra-environmental
coupling, decoherence of the central spin is fast and irreversible. Strong intra-
environmental interaction results in an effective decoupling of the central spin
from the bath and suppression of decoherence. Weaker intra-environmental
coupling reduces but does not eliminate decoherence. We argue that similar
suppression of decoherence should be observed for electronic states of He
impurities in silicon or diamond.

PACS number: 03.65.Yz

1. Introduction

Exact theories for the dynamics of open quantum systems require solution of the Schrödinger
equation (or an equivalent formalism) for the full system plus environment degrees of freedom.
This is impossible to do analytically except when the environment consists of a set of
independent harmonic oscillators (e.g., Caldeira–Leggett model [1], spin-boson model [2],
Haake–Reibold model [3]) or spins [4]. Neglect of intra-environmental coupling is thus
strongly motivated by reasons of mathematical convenience. For some interactions, such
as with nuclear spins of impurities in a solid at low temperature, the approximation seems
justified [4]. For general interactions the importance of bath self-interaction is less clear. (See
for example the conflicting opinions expressed in [5, 6].) The purpose of the present study
is to determine what effect intra-environmental coupling has on subsystem dynamics. We
thus consider the strength of bath self-interaction as a parameter in an idealized model which
does not represent any particular physical environment. To make exact numerical calculations
possible we chose a model system consisting of a small (i.e., highly quantum) central spin
interacting with a bath of self-interacting spins representing the degrees of freedom of the
environment. We shall sometimes refer to this central spin as the subsystem.
1 Present address: Instituto de Fı́sica Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, 58060
Morelia, Michoacán, Mexico.

0305-4470/03/4912305+23$30.00 © 2003 IOP Publishing Ltd Printed in the UK 12305

http://stacks.iop.org/ja/36/12305


12306 L Tessieri and J Wilkie

Intuition suggests that coupling between environment degrees of freedom can significantly
affect the properties of the bath and consequently, through subsystem-environment coupling,
the dynamics of the central spin. Mutual interactions of the bath modes allow energy exchange
without using the subsystem as an intermediary. Consider an initial state of the subsystem-
environment which is perturbed away from equilibrium. With intra-environmental coupling
the rapid initial flow of energy towards a new equilibrium state will largely occur within
the environment. Without intra-environmental coupling the energy must flow through the
subsystem, leaving it strongly entangled with the bath and hence badly decohered. (Note that
the decoherence effects discussed in this manuscript differ greatly from those which affect
macroscopic subsystems [7].)

Intra-environmental interactions may also alter more abstract properties of the bath. The
classical dynamics of a bath of oscillators can change from regular to chaotic when nonlinear
interactions are added [8]. In the quantum case, such coupling modifies the statistical properties
of the energy levels and eigenstates of the bath. Specifically, the energy spectra of quantum
systems with chaotic classical counterpart exhibit level repulsion, while systems with regular
dynamics in the classical limit show a clustering of the energy levels [9] and high degeneracy.
The structure of the bath eigenstates also changes when the dynamics of the bath undergoes
a transition from regular to chaotic. This effect can be analysed by considering the form
of the Wigner functions of energy eigenstates: for chaotic systems the Wigner functions
spread more or less uniformly over the energetically available phase space [10], whereas in
the case of regular systems they are more lumpy. Moreover, these spectral signatures of chaos
have dynamical consequences [11]. It is therefore reasonable to expect that dissipation and
decoherence will assume different forms for coupled and uncoupled baths.

Experimental evidence for the presence of microscopic chaos in fluid systems has
recently been obtained for Brownian motion of a colloidal particle in water [12]. Numerical
evidence for chaos in the solid state has been obtained via molecular dynamics calculations
of nuclear motions in silicon crystals [13], and for the electronic band structures of silicon
[14]. Propagation of acoustic phonons in Si crystals is also known to be highly sensitive
to anharmonic phonon–phonon interaction [15]. Thus, there is growing evidence for the
presence of microscopic chaos in the sort of macroscopic thermodynamic systems which in
decoherence studies are customarily modelled as baths of non-interacting oscillators or spins.

A qualitative understanding of the effects of bath self-interaction on decoherence, while
of obvious theoretical interest, might also have important applications. Minimization of
decoherence is essential for the development and implementation of a number of new
technologies such as quantum computing [16], laser control of chemical reactions [17] and
molecular electronics [18]. For quantum computing some proposed physical platforms, such
as laser manipulated cold ions in traps in near vacuum [19, 20] can very effectively minimize
decoherence. Whether such platforms can be scaled to the 105 ions needed to perform useful
computations like factorization of large integers is unclear [20]. Proposed solid state platforms
such as single-electron quantum dots embedded in a semiconductor [21] are readily scalable
[22], but decoherence is a serious obstacle. In principle, the effects of decoherence and
dissipation can be reduced through judicious choice of states for implementation of the qubit
[23] (a trivial example would be to avoid states with electric-dipole allowed transitions) and
through error correction codes [16]. Since the solid state in principle provides enormous
freedom over the choice of qubit and matrix, further theoretical insight into the mechanisms
of decoherence might prove extremely useful in selecting optimal configurations.

The effect of environmental self-interaction is almost certainly of importance in the solid
state. Unfortunately, as we noted above, the analysis of the mechanisms of decoherence
and dissipation in self-interacting environments is a problem that defies exact analytical
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treatments. Standard approaches, such as the Feynman–Vernon influence functional method
[24] or the Nakajima–Zwanzig projection technique [25] cannot be successfully applied unless
restrictive hypotheses are made on the nature of the bath and its coupling to the subsystem
of interest. Thus, for exact results we must rely on what we can calculate numerically.
Environments with few degrees of freedom should in principle provide much of the qualitative
information we seek. Such numerical studies also serve a second purpose, namely to provide
exact results which can be used as a touchstone to test the reliability of the approximate
analytical methods which describe open systems (e.g., master equation obtained using
the Redfield [26] or the stochastic resonance approximation [27] and other approaches [28]).

Because we must treat intra-environmental coupling as a parameter, the spin–spin-bath
model employed here does not map directly onto any particular physical system. We choose
near resonant subsystem and bath frequencies, and strong subsystem-environment coupling,
so that decoherence is strong in the absence of intra-environmental coupling. We show that
decoherence is greatly reduced as the intra-environmental coupling increases. We argue that
this is a consequence of a transition from integrable to chaotic bath dynamics and that similar
effects will be observed in more general environments.

In the specific case of strong intra-environmental coupling our model could be
experimentally implemented as an interstitial He in an otherwise pure silicon or diamond
[29] cluster. The subsystem (qubit) consists of the ground and one excited electronic state
of He of the same parity. Electric dipole matrix elements thus vanish and optical transitions
can be neglected. The primary mechanism of decoherence and dissipation is thus vibronic
coupling of He with phonons of the cluster. We imagine the cluster as a finite model of
a macroscopic crystal. For example, the band gap of Si is well reproduced in a cluster of
only 26 atoms [30]. A detailed discussion of He-(silicon, diamond) as a potential platform
for quantum computing will be presented elsewhere. Here we focus on decoherence of a
single qubit. Since He is known to cause small lattice distortion [31] the crystal vibrational
Hamiltonians corresponding to the ground and excited states of He are taken to be identical.
As a result the vibronic Hamiltonian of the impurity and crystal takes the form

H = h̄ω0

2
σ (0)

z + σ (0)
y

N∑
k=1

(αkPk + Pkαk) + σ (0)
x �0 + 1(0)(Tn + V (Q)) (1)

where σ
(0)
i (with i = x, y, z) denote the Pauli matrices representing the state of the impurity,

P and Q denote phonon momenta and coordinates, and Tn = ∑N
k=1 P 2

k

/
2Mn and V (Q) are

the nuclear kinetic and potential energies. The potential V (Q) includes anharmonic phonon–
phonon interactions which are known from experiment to be strong in silicon and diamond
[32]. Finally,

αk(Q) = h̄

2Mn

〈
φ1

∣∣∣∣ ∂φ2

∂Qk

〉
�0(Q) = h̄2

2Mn

N∑
k=1

〈
∂φ1

∂Qk

∣∣∣∣ ∂φ2

∂Qk

〉
(2)

are the small (i.e., O(me/Mn) ∼ 10−4) vibronic couplings arising from the nuclear coordinate
dependence of the confined He electronic wavefunctions φ1 and φ2.

Quantum dynamical simulation of more than a few coupled oscillators is currently
impossible because computational costs scale exponentially with the number of modes. To
simulate qubit dynamics under Hamiltonian (1) it is therefore necessary to truncate the number
of allowed excitations per phonon mode and restrict the number of participating phonon modes.
Provided that these limitations do not alter the chaotic character of the phonon dynamics we
expect qualitatively similar decoherence from this more idealized model. The fact that integers
are stored in binary form in computer memory strongly favours representation of the phonons
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as two state (i.e., spin-1/2) systems. The resulting spin–spin-bath model differs from those
previously studied where intra-environmental coupling has either been neglected completely
[33] or included only in a mean-field sense [4, 34]. Assuming a Debye (i.e. quadratic)
distribution of the frequencies for the phonon modes, the high Debye temperatures of silicon
(645 K) and diamond (1860 K) imply that most will be frozen in their ground states at
liquid nitrogen temperatures (77 K). Frequencies should thus be sampled below an effective
frequency cutoff ωc determined by the relevant temperature. Most sampled modes will have
frequencies near ωc because of the quadratically increasing nature of the spectrum. The low-
frequency modes which we thus neglect are much smaller than the impurity frequency ω0, are
hence non-resonant, and are not expected to play an important role.

Using this model we show that environmental self-interaction has an extremely important
effect on decoherence. Strong intra-environmental interactions effectively decouple the
subsystem from the environment, and even weak interactions qualitatively change the manner
in which phase information is lost. In section 5 we present a general semi-classical argument
that similar effects will be observed in the true Hamiltonian (1).

Section 2 explains our model in detail. In section 3 we outline the numerical methods
we employ to solve the subsystem dynamics. Numerical results for subsystem dynamics
are discussed in detail in section 4 for a wide range of intra-environmental couplings. We
summarize our findings for the spin–spin-bath in section 5 and show that similar results should
hold for the true vibronic Hamiltonian (1).

2. The spin–spin-bath model

Representing the phonons of Hamiltonian (1) by spin-1/2 modes results in simplifications
such as

P 2
k

2Mn

+
Mnω

2
k

2
Q2

k → h̄ωk

2
σ (k)

z Qk → σ (k)
x Pk → σ (k)

y QjQ
3
k → σ (j)

x σ (k)
x

which, once the terms (2) are expanded to the first order in powers of Q, lead to the vanishing
of the momentum coupling terms in (1) as a result of the fact that σx and σy anti-commute.

As a consequence of these simplifications, we can replace the solid-state model (1) with
the spin system defined by the Hamiltonian

H = H0 + HB + HI (3)

where

H0 = h̄ω0

2
σ (0)

z + βσ (0)
x (4)

is the Hamiltonian of the central spin (denoted by the superscript 0),

HB =
N∑

i=1

h̄ωi

2
σ (i)

z + β

N∑
i=1

σ (i)
x + λ

N−1∑
i=1

N∑
j=i+1

σ (i)
x σ (j)

x (5)

is the Hamiltonian of the bath, and

HI = λ0

N∑
i=1

σ (i)
x σ (0)

x (6)

describes the interaction between the central spin and its environment. For simplicity, in the
rest of this paper we adopt a system of units such that h̄ = 1. Note that the terms proportional
to β and λ in Hamiltonians (4) and (5) represent nonlinear spin interactions in the spin model
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(3) but can be interpreted as anharmonic phonon–phonon interactions if one considers the
Hamiltonian (3) as a low-temperature approximation for the model (1).

To complete the definition of the model, we have to specify the values of the various
parameters which appear in the Hamiltonian. We assume that the frequencies of the bath spins
are positive random variables with the Debye probability density

p(ω) =
{

3ω2
/
ω3

c for 0 < ω < ωc

0 for ωc < ω
(7)

appropriate for the low-energy acoustic modes of a crystal. The cut-off frequency ωc need
not be the Debye frequency ωD; in fact, at the low temperatures we consider, modes with
large frequency are unlikely to be populated and so it makes sense to choose ωc smaller than
ωD to reflect this fact. For the frequency of the central spin, we arbitrarily chose the value
ω0 = 0.8288ωc. Note that the results obtained in this manuscript do not depend crucially on
the specific form (7) of the frequency distribution. In fact, we repeated our calculations with
the box distribution

p(ω) =
{

1/ωc for 0 < ω < ωc

0 for ωc < ω

(which more heavily weights small frequencies) and found the qualitative behaviour of the
model unaltered by the change.

To simplify the form of mathematical expressions, we set ωc = 1, λ0 = 1, and we varied
the relative strength of the intra-environmental interactions by letting the parameter λ range
in the interval from λ = 0 (bath without internal spin–spin coupling) to λ = 10 (strong
bath self-interaction). In addition to considering positive values of λ, which correspond to
antiferromagnetic interactions, we investigated the case of ferromagnetic couplings, letting λ

assume negative values in the interval [−10, 0].
We set β = 0.01. An important consequence of the fact that β, although small, is not

zero, is that the Hamiltonian (3) cannot be reduced to block form. To understand this point,
we observe that the Hilbert space of the system (3) is spanned by the vectors

|0〉 = |0〉N |0〉N−1 . . . |0〉1|0〉0

|1〉 = |0〉N |0〉N−1 . . . |0〉1|1〉0

|2〉 = |0〉N |0〉N−1 . . . |1〉1|0〉0

...

|2N+1 − 1〉 = |1〉N |1〉N−1 . . . |1〉1|1〉0

(8)

where the symbols |1〉i and |0〉i denote the ‘up’ and ‘down’ states of the ith spin, i.e., the
eigenstates of the Pauli z-spin matrix σ (i)

z with eigenvalues +1 and −1 respectively. Note
that the basis states (8) can be conveniently interpreted as binary representations of integer
numbers ranging from 0 to 2N+1 − 1 if the vector

|kN, kN−1, . . . , k0〉 = |kN 〉N |kN−1〉N−1 . . . |k0〉0 (9)

(with ki = 0, 1 for i = 0, . . . , N ) is associated with the integer

k = k0 + 2k1 + · · · + 2NkN =
N∑

n=0

2nkn. (10)

For β = 0 the Hamiltonian (3) can be reduced to block form by regrouping the basis vectors
(8) in two sets defined by the condition that the states of each set have an even or odd number
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of spins ‘up’. In fact, for β = 0 all terms of the Hamiltonian (3) have the effect of flipping
either zero or two spins at once, thereby leaving invariant the subspaces spanned by the ‘even’
and ‘odd’ basis states. The terms proportional to β, on the other hand, flip just one spin and
therefore connect the ‘even’ and ‘odd’ subspaces, making the Hamiltonian (3) irreducible.

3. Numerical approach

Assume that the bath is initially in thermal equilibrium at temperature T and that the central
spin is in the excited state |1〉0. (In the case of an impurity in a insulating solid such an initial
state could be prepared using a fast laser pulse with a frequency matching a transition of the
impurity but lying in the crystal’s band gap.) The initial density matrix of the whole system
therefore has the product form

ρ(0) = ρ0(0) ⊗ ρB(0) (11)

with

ρ0(0) = |1〉00〈1| and ρB(0) = (1/Q) exp(−HB/kT )

where Q = TrB[exp(−HB/kT )]. After introducing the notation

HB

∣∣φ(B)
n

〉 = En

∣∣φ(B)
n

〉
(12)

for the 2N eigenvalues and eigenvectors of the bath Hamiltonian and

|ψn(0)〉 = |1〉0 ⊗ ∣∣φ(B)
n

〉
(13)

for the corresponding initial conditions of the total system, we can write the initial density
matrix (11) in the form

ρ(0) =
2N∑
n=1

|ψn(0)〉e−En/kT

Q
〈ψn(0)|.

To study the dynamics we have determined the states

|ψn(t)〉 = exp (−iHt) |ψn(0)〉 (14)

which evolve from (13). Once states (14) are known the evolved density is constructed via

ρ(t) = exp(−iHt)ρ(0) exp(iHt) =
2N∑
n=1

|ψn(t)〉e−En/kT

Q
〈ψn(t)| (15)

and the reduced density of interest is

ρ0(t) = TrB[ρ(t)] =
∑
n,m

〈
φ(B)

m

∣∣ψn(t)
〉e−En/kT

Q

〈
ψn(t)

∣∣φ(B)
m

〉
. (16)

We used two complementary techniques to compute the dynamics (14). For small baths,
N � 11, we numerically diagonalized both the bath Hamiltonian (5) and the total Hamiltonian
(3) using standard Householder routines (see [35]). This method gives the exact reduced
density at all times and allows us to consider a range of temperature. However, it cannot
be used for baths composed of a large number N of spins since matrices of size 2N × 2N

quickly exceed computer resources. For large baths with N � 12 spins, we exploited the
low-temperature limit. For kT → 0, high-energy eigenstates of the bath are depleted and one
can truncate the sum in equation (15) to the first M terms, with M � 2N , so that the density
matrix takes the form

ρ(t) �
M∑

n=1

|ψn(t)〉e−En/kT

Q
〈ψn(t)|. (17)
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Thus a complete diagonalization of the bath Hamiltonian becomes unnecessary. We chose a
bath temperature of kT = 0.02 for which the number of terms M needed in (17) is 20. We
checked that neglected terms were irrelevant by evaluating the probability that the bath be in
an eigenstate of energy E > E20. For baths with N � 11 spins with 0 � λ � 10 we obtained
an upper bound

P(EB > E20) = 1 −
20∑

n=1

e−En/kT /Q < 10−4

showing that bath eigenstates with E > E20 are unpopulated. As a further check, for baths
composed of more than 11 spins we estimated the ratio R = p20/p1 = exp(E1 − E20). For
N = 14, 0 � λ � 10 and kT = 0.02 the probability ratio was less than 10−6.

To determine the M bath eigenstates of lowest energy, we used ARPACK routines based on
the Lanczos algorithm2. Evolved states (14) were calculated using a Runge–Kutta algorithm
of eighth order [36]. Neither the programmes for the partial diagonalization of the bath
Hamiltonian, nor the Runge–Kutta subroutine required that the whole Hamiltonian matrix be
stored in the computer memory, but only that the matrix-vector product H |ψ〉 be defined. This
more efficient use of computer resources allowed us to consider baths of up to 14 spins.

We calculated H |ψ〉 given an input state |ψ〉 by iterated calls to subroutines which
multiplied by σ (i)

x and σ (i)
z . Consider multiplication by σ (i)

x as an example. With vectors (8)
as a basis for our Hilbert space

σ (i)
x |ψ〉 =

2N+1−1∑
k=0

〈k|ψ〉σ (i)
x |k〉 (18)

thus reducing our problem to that of finding an efficient way to multiply the basis vectors (8)
by σ (i)

x . Since the matrix σ (i)
x has the effect of flipping the ith spin, one has

σ (i)
x |kN, . . . , ki, . . . , k0〉 = |kN, . . . , ki, . . . , k0〉

where ki = 1 if ki = 0 and ki = 0 if ki = 1. Multiplication by σ (i)
x , therefore, replaces the kth

component of |ψ〉 (where k = k0 + · · · + 2iki + · · · + 2NkN ) with the k′th component (where
k′ = k0 + · · · + 2iki + · · · + 2NkN ) and vice versa. In binary representation, the numbers k
and k′ differ by a single bit (the ith bit) and one can therefore obtain k′ from k using Fortran
intrinsic functions. Specifically, we used the XOR-function (exclusive or) to flip the ith bit of
the kth state. Multiplication by σ (i)

z can be similarly implemented.
After determining the evolved density (15), we traced out the bath degrees of freedom to

obtain the reduced density (16). As indicators of quantum coherence, we chose the polarization
and entropy of the central spin defined respectively as

	P(t) = Tr[ρ0(t)	σ ] (19)

and

S0(t) = −Tr [ρ0(t) ln ρ0(t)] = −1

2
ln

(
1 − P 2

4

)
− P

2
ln

(
1 + P

1 − P

)
. (20)

Here P = | 	P | denotes the modulus of the polarization vector 	P . Note that (19) contains as
much information as the reduced density itself. In fact (16) can be expressed in terms of 	P via

ρ0(t) = 1
2 (1 + 	P(t) · 	σ).

2 http://www.caam.rice.edu/software/ARPACK.
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Figure 1. S0(t) versus ωct (14 bath spins).

4. Dynamics of the central spin

Here we examine the effects of intra-environmental couplings on the dynamics of the central
spin. We consider the antiferromagnetic and the ferromagnetic cases separately. High-
temperature results apply only to the case where the spin-bath represents true physical spins.

4.1. Antiferromagnetic interactions

To evaluate the effect of antiferromagnetic interactions we calculated the dynamics of the
central spin for values of λ ranging from λ = 0 (uncoupled spins) to λ = 10 (strong coupling).
As a point of reference, note that in the absence of subsystem-environment coupling Pz(t)—
initially one—undergoes periodic fluctuations to slightly smaller values. The components
Px(t) and Py(t)—initially zero—oscillate about zero with the same period and similar small
amplitude.

Entropy (20) is shown in figure 1. Figures 2–4 show components of the polarization
(19). In the figures, each curve corresponds to a different value of the intra-environmental
coupling λ (reported in parenthesis to the right). The thermal average was computed for a
bath at temperature kT = 0.02. The results shown are for N = 14 but are also representative
of smaller baths with even numbers of spins (i.e., 8, 10 and 12). The timescale considered
is long enough for the system to attain its asymptotic condition as can be seen from figure 5
which shows the entropy of the central spin on a much longer timescale (data obtained for
N = 10 spins).

When λ = 0 (i.e., bath spins non-interacting), the central spin undergoes rapid
decoherence, with the polarization quickly falling to zero and the entropy S0(t) simultaneously
approaching the maximum value Smax

0 = ln(2) � 0.693 147 . . . . As λ increases, however,
the entropy S0(t) tends to progressively smaller asymptotic values and the components of
the polarization vector approach the dynamics of a central spin evolving in isolation. In
other words, the existence of a strong interaction among bath spins suppresses environmental
decoherence.
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Figure 2. Pz(t) versus ωct (14 bath spins).
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Figure 3. Px(t) versus ωct (14 bath spins).

This apparently puzzling result is a straightforward consequence of the fact that strong
interactions between bath spins produce an almost complete decoupling of the central spin
from the bath. This can be verified by considering the thermal average of the interaction
Hamiltonian (6), defined as

〈HI(t)〉 =
2N∑
n=1

〈ψn(t)|HI |ψn(t)〉 e−En/kT /Q. (21)

Note that 〈HI(t)〉, rather than λ0, is the physically relevant quantity determining the strength
of the interaction. In fact, the interaction may be small even if λ0 is large. The evolution of
〈HI(t)〉 is displayed in figure 6, which shows that as λ increases the effective interaction of
the central spin with the bath tends to zero (data obtained for 10 spins). Quantitatively, 〈HI 〉



12314 L Tessieri and J Wilkie

-0.1

-0.05

0

0.05

0.1

0.15

0 20 40 60 80 100

(0)
(1)
(2)
(4)
(6)

(10)

Figure 4. Py(t) versus ωct (14 bath spins).
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Figure 5. S0(t) versus ωct (10 bath spins).

averaged over the time interval
[
0 : 2500ω−1

c

]
decreases from 〈HI 〉 = −3.07 for λ = 0 to

〈HI 〉 = −0.01 for λ = 10.
There is a simple explanation for the observed behaviour of the average interaction term

(21). Define the total bath spin

	� =
N∑

i=1

	σ (i) (22)

(i.e., �x = ∑N
i=1 σ (i)

x , etc) and rewrite the interaction Hamiltonian (6) and bath Hamiltonian
(5) in the suggestive forms

HI = λ0σ
(0)
x �x



Decoherence in a spin–spin-bath model with environmental self-interaction 12315

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100

(0)
(1)
(4)
(8)

(10)

Figure 6. Thermal average 〈HI 〉 of the interaction Hamiltonian versus ωct (10 bath spins).

and

HB = λ

2

[
�2

x − N1
]

+ β�x +
N∑

i=1

ωi

2
σ (i)

z . (23)

Equation (23) shows that for λ 
 ωc the bath Hamiltonian takes the approximate form

HB = λ

2

[
�2

x − N1
]

+ O(λ0) (24)

which is essentially proportional to �2
x . Thus for large values of λ the bath eigenstates (12)

must be approximate eigenvectors of �x and those of lowest energy must correspond to the
eigenstates of �x with zero eigenvalue. (That many such eigenstates exist is a consequence
of the fact for every value of the macroscopic variable �x there are many corresponding
microstates.) Thus, for low temperature and large λ the relevant diagonal and off-diagonal
matrix elements of the environment coupling operator �x will be zero.

These conclusions are confirmed by the numerical evaluation of the expectation values of
�x on the bath eigenstates (12). Figure 7 reports

〈
φ(B)

n

∣∣�x

∣∣φ(B)
n

〉
as a function of the index n

which orders the eigenstates |φ(B)
n 〉 in ascending energy (data obtained for N = 10 so n runs

from 1 to 1024). Data are shown for λ = 0 and λ = 10. For λ = 0 the expectation values of
�x are small but non-zero (this is more evident in the inset, which displays the data for the
100 lowest energies). For λ = 10 the expectation value of �x has a sort of step-like behaviour
and attains relatively large values for high-energy bath eigenstates. At low temperatures only
low-energy states matter and for these

〈
φ(B)

n

∣∣�x

∣∣φ(B)
n

〉
is orders of magnitude smaller than for

the λ = 0 case (see inset in figure 7). This effect can be quantified by computing the quantity

〈�x〉 = 1

20

20∑
n=1

〈
φ(B)

n

∣∣�x

∣∣φ(B)
n

〉
. (25)

One finds

〈�x〉 =
{

−0.161 951 for λ = 0

−6.0 × 10−5 for λ = 10
(26)

for N = 10 spins which is indeed small for strong coupling.
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Figure 7. Expectation value 〈φ(B)
n |�x |φ(B)

n 〉 versus n for λ = 0 and λ = 10. The stacked inset
shows on a larger scale the first 100 values. The data were obtained for a 10-spin bath.

The vanishing of the off-diagonal coupling matrix elements
〈
φ(B)

n

∣∣�x

∣∣φ(B)
m

〉
is shown in

figure 19 for N = 14 and λ = 10.

4.1.1. High-temperature limit. Figure 7, for λ = 10, shows that the expectation values of �x

are large for high-energy bath states. Populations in these states are zero at low temperatures
but increase with temperature. The thermal average interaction (21) will therefore also increase
with temperature, effectively coupling the central spin to its bath. As a consequence, one can
expect that the self-interacting bath will behave more and more like an ordinary bath of
uncoupled spins when the temperature is raised. Figure 8 shows the time behaviour of the
central spin entropy for a bath of 10 coupled spins (with λ = 10) at various temperatures.
Entropy increases monotonically with temperature, progressively approaching the behaviour
characteristic of the uncoupled bath. However, even at high temperature (kT = 300) the
entropy remains lower than for a bath of uncoupled spins: this shows that even at high
temperatures the spin–spin coupling has a reductive effect on decoherence. These features are
confirmed in figure 9. Raising the temperature lowers the asymptotic value of Pz(t) which
however never becomes zero.

In summary, at low temperatures the strong intra-environmental interactions force the
bath spins to align in an antiferromagnetic state of zero moment and behave like a single
giant spin decoupled from the central spin. As the temperature is raised thermal fluctuations
eliminate the spin alignment and switch on the subsystem-environment coupling, making the
self-interacting bath behave more like an ordinary bath of uncoupled spins.

4.1.2. Odd numbers of spins. So far we have considered the behaviour of a central spin
coupled to a bath composed of an even number of spins. To complete the discussion of
antiferromagnetic interactions, we briefly mention a last feature of the self-interacting spin
bath—namely modifications which appear for baths with an odd number of spins.

Figures 10 and 11 show S0(t) and Pz(t) for N = 11. Similar behaviour was obtained
with baths of 5, 7 and 9 spins. Only λ = 0, 1 and 10 are shown because the curves for



Decoherence in a spin–spin-bath model with environmental self-interaction 12317

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500

kT = 0.02
kT = 1
kT = 5

kT = 10
kT = 20
kT = 50

kT = 300

Figure 8. S0 versus ωct for λ = 10 for various temperatures of the bath (10 bath spins).
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Figure 9. Pz versus ωct for λ = 10 for various temperatures of the bath (10 bath spins).

λ greater than 1 overlap. The data show that, regardless of whether the number of bath
spins is even or odd, S0(t) is a decreasing function of the intra-environmental coupling.
However, for N odd, the average value of the entropy decreases less than for N even and
oscillates more (compare figures 10 and 1). Polarization behaves similarly. As shown in
figure 11, when the intra-environmental interactions are strong, Pz(t) oscillates around the
value Pz(t) � 0.8 for baths with odd number of spins, whereas one has Pz(t) � 1 for
a bath with an even number of spins. Nor do the oscillations die on a longer timescale:
in fact, numerical calculations performed via the exact diagonalization of the Hamiltonian
show oscillatory behaviour persisting on timescales an order of magnitude longer than that in
figures 10 and 11. Thus intra-environmental interactions have the effect of suppressing
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Figure 11. Pz versus ωct (bath composed of 11 spins).

decoherence regardless of how many spins compose the bath; however, this effect is more
marked if the bath is composed of an even, rather than an odd, number of spins.

The oscillations of entropy and polarization are also displayed in the strength of the
interaction between the central spin and its bath. Figure 12 shows the thermal average of
the interaction Hamiltonian (6). Comparing figure 12 with figure 6, it is evident that the
interaction between the central spin and bath is weaker for N even than N odd. Computing the
parameter (25) for a bath of 11 spins gives

〈�x〉 =
{

−0.191 80 for λ = 0

−4.97 × 10−3 for λ = 10.
(27)
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Figure 12. Thermal average 〈HI 〉 of the interaction Hamiltonian versus ωct (baths of 11 spins).

Table 1. 〈�x〉|λ=10 as a function of N.

Number of bath spins 〈�x〉 for λ = 10

7 −0.011 147
9 −0.006 724

11 −0.004 967

Comparing equation (26) with equation (27) shows that 〈�x〉 is a decreasing function of λ for
baths of both even and odd numbers of spins but 〈�x〉 for λ = 10 is two orders of magnitude
larger for the 11-spin bath than for the 10-spin bath. Table 1 shows that as N increases 〈�x〉
(for λ = 10) decreases. The even–odd difference is thus a finite-size effect which should
vanish in the thermodynamic limit.

4.2. Ferromagnetic interactions

The entropy for the ferromagnetic case is shown in figure 13. The data were obtained for a
bath of 10 spins; we use a semi-logarithmic scale to distinguish the curve for λ = −2 from
the x-axis. We do not show data for values of λ < −2 because they overlap. The behaviour
of the entropy is similar in the ferromagnetic and antiferromagnetic cases; the only significant
difference is that in the ferromagnetic case a suppression of the entropy can be achieved with
weaker intra-environmental interactions.

The most relevant difference between antiferromagnetic and ferromagnetic baths emerges
when one considers the behaviour of the polarization vector (19) shown in figures 14–16. We
have chosen a timescale appropriate to the fast oscillations of the polarization components
(but long enough to be representative of the long-time behaviour of 	P(t)). For λ � −2
the components of the polarization vector assume a strongly oscillatory behaviour. This is
consistent with the suppression of entropy since entropy depends only on the norm of the
polarization vector which can stay close to unity even if individual components of 	P oscillate
in time. Such polarization dynamics, however, is very different from that observed in the
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Figure 14. Pz versus ωct (10 spin bath).

antiferromagnetic case where Pz(t) � 1 and Px(t) � Py(t) � 0 at all times. Term (21) is
not negligible for ferromagnetic interactions, as can be seen in figure 17, where we represent
the thermal average of the interaction Hamiltonian as a function of time. For λ � −2, the
interaction term 〈HI(t)〉 becomes almost independent of the strength of the spin–spin coupling
and oscillates around a non-zero value.

This behaviour can be explained by writing the bath Hamiltonian in the form (23) and by
observing that in the limit of strong ferromagnetic interaction

HB = −|λ|
2

[
�2

x − N1
]

+ O(λ0). (28)
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Figure 16. Py versus ωct (10 spin bath).

Note that the antiferromagnetic and ferromagnetic Hamiltonians (24) and (28) are identical
but with opposite sign. The bath eigenstates of lowest energy are eigenstates of �x in both
cases, but with

〈
φB

n

∣∣�x

∣∣φB
n

〉 � 0 in the antiferromagnetic case and
∣∣〈φB

n

∣∣�x

∣∣φB
n

〉∣∣ 
 1 in
the ferromagnetic case. This is confirmed by figure 18, which represents

〈
φB

n

∣∣�x

∣∣φB
n

〉
as

a function of the index n. Not surprisingly, the distribution of points for λ = −10 is
almost the reverse of the distribution for λ = 10 shown in the corresponding figure 7.
Consequently, the coupling term (21) is significantly larger for a ferromagnetic bath than it is
for a antiferromagnetic one. Thus, diagonal matrix elements of the coupling operator �x are
large while off-diagonal matrix elements are again zero.



12322 L Tessieri and J Wilkie

-7

-6

-5

-4

-3

-2

-1

0

1

0 50 100 150 200

(0)
(-2)

(-10)

Figure 17. 〈HI 〉 versus ωct (10 spin bath).
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Figure 18. Expectation value 〈φ(B)
n |�x |φ(B)

n 〉 versus n for λ = 0 and λ = −10 (10 spin bath).

It is important to note that the oscillations of the average interaction Hamiltonian (21) are
synchronous with those of Px(t): more precisely

β ′(t) = 〈HI(t)〉/Px(t)

is practically constant in time and, for λ � −2, it takes the value

β ′ � −10

regardless of the strength of the spin–spin coupling. The value of β ′ is easily explained. The
matrix element

〈
φB

1

∣∣�x

∣∣φB
1

〉
corresponding to the lowest energy bath eigenstate is −10 while

that of the next lowest is 10. However, the energy gap between these states is 0.2 leading to a
population ratio p2/p1 ∼ 10−5 at kT = 0.02. Hence, the lowest energy state is the only one
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populated (in sharp contrast to the antiferromagnetic case) and its �x eigenvalue is −10. This
also explains why decoherence is more easily suppressed in the ferromagnetic case.

Thus the central spin interacts with the bath through

H eff
I = β ′σ (0)

x (29)

and the evolution of the central spin is dictated by Hamiltonian (4) with a renormalized β

parameter:

β → β̃ = β + β ′ � −10. (30)

Solving the Heisenberg equations for the renormalized central spin with initial conditions
Pz(0) = 1, Px(0) = Py(0) = 0 gives

Px(t) = 2β̃ω0

�2
(1 − cos �t)

Py(t) = −2β̃

�
sin �t (31)

Pz(t) = 1 − 4β̃
2

�2
(1 − cos �t)

where � =
√

ω2
0 + 4β̃2. Comparing equation (31) with the actual data shows that (29) is

correct. Figures 14–16 do not show 	P(t) predicted by equation (31) because of overlapping
of the various curves.

We therefore conclude that the only effect that a low-temperature bath with internal
ferromagnetic interactions has on the central spin is a renormalization (30) of the β parameter
in the Hamiltonian (4) (i.e., a Lamb shift). In both the antiferromagnetic and the ferromagnetic
cases, therefore, when intra-environmental interactions are strong the dynamics of the central
spin is almost autonomous from that of the bath and is dictated by a Hamiltonian of the
form (4).

As a last remark on the ferromagnetic case, we observe that the dynamics of the central
spin is unaffected by whether the bath is composed of an even or odd number of spins.

5. Discussion and conclusions

In this work we considered a spin-1/2 subsystem coupled to a low-temperature bath of
interacting spin-1/2 modes. We focussed our attention on the effects of antiferromagnetic
and ferromagnetic intra-environmental interactions on decoherence. In both cases strong
intra-environmental interactions suppress decoherence by making the dynamics of the central
spin almost autonomous from the bath itself. More precisely, strong antiferromagnetic
couplings among bath spins make the average value of the subsystem-environment interaction
Hamiltonian vanish, thereby making the central spin evolve with its unperturbed and uncoupled
Hamiltonian. Strong ferromagnetic couplings among bath spins, on the other hand, cause a
Lamb shift of the subsystem Hamiltonian but otherwise leave it to evolve in isolation.

These effects can be schematically explained by considering Hamiltonian (3) with
HI = SB where S and B are subsystem and bath operators. Now, the eigenstates of HB

are also eigenstates of B for strong intra-environmental coupling in our model. Hence the
off-diagonal matrix elements of B in this eigenbasis are zero and so (3) cannot couple bath
eigenstates. Since the initial states of the full system are proportional to bath eigenstates for
initial conditions (13), it follows that the time evolved reduced density must be of the form

ρ0(t) =
∑

n

e−En/kT

Q
e−i(H0+SBn)tρ0(0) ei(H0+SBn)t (32)
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where Bn is the eigenvalue of B corresponding to eigenstate
∣∣φ(B)

n

〉
of HB . In the

antiferromagnetic case we found that all relevant Bn were zero for strong intra-environmental
coupling and hence the dynamics was free of decoherence. For the ferromagnetic case we
found that only the lowest energy state was populated at low temperature and so only one term
contributes to (32) and again the dynamics is coherent, but with a Lamb shift.

We expect similar effects to occur in more general baths of coupled anharmonic oscillators.
The key issue as we have seen is what happens to the matrix elements of the spin-bath
coupling Hamiltonian, in the eigenbasis of the bath, when bath self-interactions are turned
on. To suppress decoherence the off-diagonal matrix elements must be small. Clearly in an
integrable bath (i.e., no self-interaction) some off-diagonal matrix elements will be large due
to selection rules. One would thus expect strong decoherence for integrable environments.
In the case of chaotic environments it is known that the off-diagonal matrix elements are of
order h(N−1)/2 smaller than the diagonal matrix elements [37–39], where N is the number of
environmental modes. Specifically, the diagonal matrix element of a subsystem-environment
coupling operator B,

Bn = 〈n|B|n〉 �
∫

dx δ(En − H(x))B(x)∫
dx δ(En − H(x))

= 〈B〉 (33)

is its microcanonical average at energy E = En. Here x represents the 6N momenta and
coordinates of the environment and B(x) represents the Wigner function of B. Similarly [38,
39],

|〈n|B|m〉|2 � hN−1

∫ ∞
−∞ dt〈[B(0) − 〈B〉][B(t) − 〈B〉]〉 exp[i(Ēn − Ēm)t/h̄]∫

dxδ((Ēn + Ēm)/2 − H̄ (x))
(34)

where the microcanonical averages are evaluated at energy (Ēn+Ēm)/2. Note that the energies
which appear in equation (34) are the unfolded energies Ēn = N(En), where N(E) is the
average number of levels with energy less than En, rather than the energies En themselves.
This is so because the off-diagonal matrix elements of B can be written in the form (34) only
if the average spacing between energy levels is constant.

The time correlation function in equation (34) decays exponentially at short time as
exp(−�2t2) where � is its spectral width. Hence equation (34) gives a result

|〈n|B|m〉|2 ∝ hN−1 exp[−(Ēn − Ēm)2/4�2h̄2]. (35)

In figure 19 we plot the logarithm of the squared off-diagonal matrix elements of B = �x for
the spin-bath Hamiltonian (5) (for N = 14 and λ = 10 with antiferromagnetic interaction)
against the squared difference in energy and obtain a plot which exhibits an average linear
behaviour in agreement with equation (35).

Since Planck’s constant is small and N is very large, the off-diagonal matrix elements (35)
for a chaotic environment are negligible. Therefore, we expect at most a Lamb shift of the
subsystem for each eigenstate of the bath and hence a reduced density like (32).

However, the Lamb shifts can vary from state to state and hence still cause decoherence
[4]. If the coupling operator B is proportional to the coordinates of the bath, then scaling
the momenta and coordinates of the bath as x = √

En − E1 x̃ in equation (33) gives
Bn = √

En − E1F(
√

En − E1) where F(z) is a function which can be expanded in powers
of z and E1 denotes the ground energy of the bath. The order z0 term vanishes by symmetry
and so

Bn = b(En − E1) + · · · (36)

where b is independent of En. Figure 20 shows the diagonal matrix elements of B = �x for
the spin-bath Hamiltonian (5) plotted against En. In the figure, we plot the data relative to the
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low-energy part of the bath spectrum; again we see the predicted linear dependence. Thus, for
sufficiently low energies and large intra-environmental coupling

Bn/h̄ω0 = b(En − E1)/h̄ω0 � 1 Bn/λ = b(En − E1)/λ � 1

and so there is always a low-energy region where the diagonal matrix elements are practically
constant. Hence, decoherence should be negligible for chaotic baths at low temperatures.

In the specific case of He in silicon or diamond b ∼ 10−4 and decoherence should
be suppressed even at high temperature. There are well-known [31] optical transitions for
interstitial He in Si with h̄ω0 ∼ 1 eV. Assuming that an electric-dipole forbidden state can
be found with comparable energy and assuming that only bath states with energies less than
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0.05 eV contribute at liquid nitrogen temperatures (i.e. kT = 0.007 eV), then Bn/h̄ω0 ∼ 10−5.
Similarly, λ ∼ 0.005 eV [32] and so Bn/λ ∼ 10−3. Hence, decoherence of He in Si
should be minimal even at 77 K. We expect even less decoherence for diamond for which
λ ∼ 0.03 eV [32].

We think it is appropriate to conclude this paper with a brief remark on the limitations of the
present analysis. Although the general arguments presented in this section suggest that chaotic
baths should cause less decoherence than baths with regular dynamics, we recognize that our
semiclassical argument does not constitute a rigorous proof and that further investigation is
necessary in order to clarify the links between chaos and decoherence. More work is also
required to reach a complete understanding of the realistic model (1) for which the spin model
(3) can provide only a somewhat crude approximation. We think that these shortcomings
can be at least partially overcome by considering a bath composed of nonlinearly coupled
oscillators; the study of such a system will be the object of future work.

Acknowledgment

The authors gratefully acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada.

References

[1] Caldeira A O and Legget A J 1983 Ann. Phys., NY 149 374
[2] Weiss U 1999 Quantum Dissipative Systems 2nd edn (Singapore: World Scientific)

Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[3] Haake F and Reibold R 1985 Phys. Rev. A 32 2462
[4] See Prokof’ev N V and Stamp P C E 2000 Rep. Prog. Phys. 63 669, and references therein
[5] Alicki R 2002 Preprint quant-ph/0205173

Alicki R 1991 J. Phys. A: Math. Gen. 24 4743
[6] Zurek W H 2001 Nature 412 712
[7] Braun D, Haake F and Strunz W T 2001 Phys. Rev. Lett. 86 2913
[8] Arnold V I and Avez A 1989 Ergodic Problems of Classical Mechanics (New York: Addison-Wesley)
[9] Haake F 2001 Quantum Signatures of Chaos 2nd edn (Berlin: Springer)

Berry M V 1983 Chaotic Behavior in Quantum Systems ed G Ioos, R H G Helleman and R Stora (Amsterdam:
North-Holland)

[10] Berry M V 1989 Proc. R. Soc. A 423 219
[11] Wilkie J and Brumer P 1997 J. Chem. Phys. 107 4893

Wilkie J and Brumer P 1991 Phys. Rev. Lett. 67 1185
[12] Gaspard P, Briggs M E, Francis M K, Sengers J V, Gammon R W, Dorfmann J R and Calabrese R V 1998

Nature 394 865
[13] Miyano T, Munetoh S, Moriguchi K and Shintani A 2001 Phys. Rev. E 64 016202
[14] Mucciolo E R, Capaz R B, Altshuler B L and Joannopoulos J D 1994 Phys. Rev. B 50 8245
[15] Maris H J and Tamura S 1993 Phys. Rev. B 47 727

Shields J A, Msall M E, Carroll M S and Wolfe J P 1993 Phys. Rev. B 47 12510
[16] Lo H-K, Popescu S and Spiller T 1998 Introduction to Quantum Computation and Information (Singapore:

World Scientific)
[17] Brumer P and Shapiro M 1998 Laser Part. Beams 16 599
[18] Mujica V, Nitzan A, Mao Y, Davis W, Kemp M, Roitberg A and Ratner M A 1999 Adv. Chem. Phys. 107 403
[19] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, Häffner H, Schmidt-Kaler F, Chuang I L and Blatt R
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